Ниже представлен краткий экскурс в историю эволюции инженерной мысли "ролико-лопастного" машиностроения с XVI по наше время.
С незапамятных времен и по сей день большинство изобретательских умов были заняты проблемой облегчения человеческого труда. Идея всевозможного и повсеместного замещения человека машинами подстегивает инженеров к активной деятельности и в наше время (в т.ч. Скайнет и Джона с Сарой Конноров). На рассвете технического прогресса умы были сориентированы на механизацию наиболее жизненно важных процессов - переремещения воды и грузов.
А в качестве источника энергии рассматривались доступные в то время силы ветра, воды и пара. Ниже будут рассмотрены конструкции использовавшие последние два источника, а именно насосы, гидромоторы, паровые машины(паровые двигатели). За трехсотлетнюю историю развития индустриального общества были предложены десятки тысяч различных воплощений инженерной мысли о преобразовании обуздании энергии, в данном обзоре мы рассмотри наиболее близкие к ролико-лопастной тематике. Однако, все перечисленные ниже схемы роторных сегодня сменили предначертанную создателями судьбу и используются в наше в ремя в качестве расходомеров.
1588
1636
Шестеренчатый насос Паппенхейма
Самые ранние источники ссылаются на Рамелли (Ramelli), (1588) который предложил роторный насос для перекачки воды лопастного типа, и Паппенхейм (Pappenheim), пердложившего шестеренчатый насос, (1636) как те что используются сегодня для подачи смазочного масла в автомобильных двигателях. Хотя ни кто из них не предложил использовать свою конструкцию в качестве паровой машины, эти схемы всплывают вновь и вновь в истории строения паровых машин.
1790
Паровая машина Брамы и Дикенсона (The Bramah & Dickenson Rotary Engine)
Внутри рабочей камеры расположен вращающийся ротор с одной лопастью, впускное, выпускное отверстия и клапан выполненный в виде перемычки связанной с внешним цилиндром или другим отодвигающим механизмом, которая может бать отодвинута в нужное время для прохождения лопасти. Клапан должен двигаться очень быстро и с определенным запасом чтобы избежать аварии. Кроме того он должен иметь определенный запас прочности чтобы выдержать перепад давления и не допустить утечку между впускным и выпускным отверстием. Данная конструкция предлагалась к использованию в качесте паровой машины либо водяного насоса. Брама был универсальным инженером, который запатентовал ряд изобретений от винта пропеллера до туалета.
1797
Паровой двигатель Картрайта (THE CARTWRIGHT ENGINE: 1797 PATENT)
В 1797 году господин Эдмунд Картрайт запатентовал свой роторный паравой двигатель стремя лопастями на роторе и двумя откидными клапанами. Рабочее тело попадает в паровой двигатель через отверстие E и давлением на лопасти приводит ротор во вращение. Лопасти сами овобождали себе путь поочередно открывая клапана. Рабочее тело совершив работу покидает паровую машину через отверстие F, назначение отверстия С точно не известно, возможно оно служило для слива конденсата.
Катрайт также занимался разраработкой обычных поршневых двигателей, которые работали от спиртового пара.
1805
Роторный паровой двигатель Флинта (THE FLINT ENGINE: 1805 PATENT)
Эндрю Флинт получил патент на свой роторный паровой двигатель в 1805 году. Ротор имеет одну лопасть которая приводит его в движение под действием давления пара. Для предотвращения холостого сброса пара в паровой машине установлены два поворотных клапана в форме полумесяцев i и k, Они выполнены таким образом, что имеют два положения в одном из которых которых обеспечивают проход лопасти и не пропускают пар - в другом. Эти клапана приводятся в движение от внешних связей, рисунок 3. Пар попадает в рабочую камеру паровой машины через отверстие h и через отверстие g(рис 2) покидает машину.
Как видно из второго рисунка ротор паровой машины разделен на две части, пар подается через нижнюю, совершает работу и покидает машину через верхнюю и полый вал. Обратите внимание на простое уплотнение вала y и z.
На рисунке три представлена оригинальная и замысловатая система рычагов обеспечивающая синхронизацию клапонов с ротором
1805
Роторный двигатель Троттера (THE TROTTER ENGINE: 1805 PATENT)
Данный двигатель был запатентован Джоном Троттером в Лондоне в 1805 году. Как и многие другие двигатели эта конструкция использовалась и в качестве насоса как и показано на рисунке - насос с тремя удобными монтажными выступами.
Внутренний и внешний цилиндры не подвижные, а внутренний подвижен. Лопасть была изготовлена из прямоугольного куска латуни или другого металла установленная между двума неподвижными цилиндрами.
1825
Двигатель Эва (THE EVE ENGINE)
В 1825 году господин Джозеф Эва, гражданин США, запатентовал роторный двигатель в Лондоне. Здесь показан ввиде водяного насоса. Рабочая камера пневмодвигателя состоит из ротора с тремя лопастями и вращающегося клапана геометрическая форма которого обеспечивает прохождение лопости в нужный момент и разделение рабочей камеры на впускную и выпускную полости. Как вы видите при прохождении лопасти через ролик возникает серьезный путь утечки, который имеет тяжелые последствия для эффективности данной конструкции. Ниже представлены оригинальные рисунки предположительно взятые из того же патента
1842
Кольцевой роторный пневмодвигатель Ламба (THE LAMB ENGINES: 1842)
Этот двигатель был запатентован в 1842 году, он был предназначен для работы с воздухом или паром как в качестве пневмомотора ток и в качестве насоса. Был ли он когда-либо построен или нет в настоящее время неизвестно. Однако эта схема является сегодня одной из самых популярных у современных изготовителей расходомеров. Рабочая камера образована двумя неподвижными цилиндрами - внешним и внутренним, разделена на две части: неподвижной перегородкой с одной стороны и подвижным кольцевым ротором (поршнем) с прорезью ля перегородки - с другой. Ротор работает попеременно то внейней то внутренней поверхностью кольца. К центру ротора прикреплен вал с кривошипом который совершает вращательные движения.
Ниже приведена схема двухкамерной расширительной машины. Эта машина имеет две рабочие камеры и два кольцевых поршня, котрые связаны с общим валом. Вторая и последующие внешние камеры нужны для более эффективного использования пара.
1866
Роторный паровой двигатель Нортона (THE NORTON ROTARY ENGINE)
Эта паровая машина была запатентована в США в 1866 году. Данная машина является обратимой.
1882
Паровой двигатель Долгорукова (The Dolgorouki Rotary Steam Engine)
Эта машина была выставлена на Международной Выставке d'Electricit в русской и немецкой секциях. В кой секции она была на стенде компании Siemens & Halske, где работала в качестве динамо машины которая была предназничена для железной дороги (Пригородные линии Берлина).
Массивный маховик свидетельствует о том что данный двигатель не мог похвастаться постоянным моментом.
На вход данного парового двигателя подавался пар под давлением то 58 до 72 фунтов на квадратный дюйм (от 4 до 5 атм) и развивал мощность от 5 до 6 лошадиных сил (от 3,7 до 4,5 кВт) при 900..1000 оборотов/минуту на. Это гораздо быстрее чем поршневой паровой двигатель, что гораздо лучше подходит для непосредственного привода динамо машины. Генератор мог выдавать электрический ток до 20 Ампер (напряжение неизвестно, но можно предположить по мощности, что гдето в районе 220 Вольт).
Машина состоит из двух пар С-образных роторов, которые синхронизируются шестернями вне рабочей камеры в середине корпуса паровой машины. Было отмечено что у парового двигателя нет мертвой точки. Паровая машина была оснащена центробежным регулятором на входной трубе (верхний левый угол на фото).
Рычаг спереди предназначался для управления скоростью.
1883
ДВИГАТЕЛЬ ТВЕРСКОГО Н.Н.
Доклад Н.Н. Тверского. О результатах сравнительного испытания коловратных и прямолинейных машин.
– Милостивые государи! В 1883 году я докладывал вам о моей машине в 4 номинальные силы, предполагавшейся к постройке на Балтийском заводе для катера Государя Императора. Теперь я уже имею возможность сообщить о результате испытаний моих машин. Но для лучшего уяснения дела необходимо ознакомиться с коловратными машинами; а потому, не входя в подробности устройства оных, постараюсь вкратце восстановить в вашей памяти сказанное мною в 1883 г.
188х
Ниже представлены еще две конструкции ролико-лопастных машин 80-х)
Паровой двигатель Берренберга. Корпус представляет собой две пересекающиеся цилиндрические поверхности. На противоположных сторонах ротора размещены лопасти. Лопасти выполнены в виде вращающихся цилиндров, которые катятся по внутренней поверхности корпуса. Импульс пара поступает в рабочую камеру паровой машины из вращающегося клапана.
Паровой двигатель Риттера. Имеет схожую идею подачи пара в рабочую камеру с предыдущей паровой машиной, однако, имеет три вращающихся клапана, что гораздо сложнее.
1886
Паровой двигатель Беренса (THE BEHRENS ENGINE)
Эта паровая машина (турбина) была запатентована Генри Беренсом в США в 1866 году. Этот паровой двигатель имеет массивный маховик, также есть центробежный регулятор пара на входе. Эта паровая турбина имела два С-образных ротора, которые синхронизированы между собой зубчатой передачей расположенной вне рабочей камеры. Достоинством парового двигателя собранного по данной схеме, несомненно, является минимум торцевых уплотняющих зазоров, необходимых при торцах роторов. Все остальные уплотнения цилиндрические, что их делает весьма простыми для технической реализации.
Для уменьшения дисбаланса С-образных роторов Генри Беренс 10 апреля 1866 года запатентовал противовес на задних торцах роторов, а за тем в 1868 году предложил схему с симметричными роторами не требующими применения балансира.
Сегодня ма можем встретить данную конструкцию в качестве высокоточного камерного ротационного расходомера с трапециедальными лопастями.
1895
Насос Клейна
1898
Паровая турбина Юнбехенда
Этот паровой двигатель был запатентован Яковом Юнбехендом в июне 1898 года в США.
Двигатель имеет центральный семилопастной ротор и два вращающихся клапана по обе стороны от него. Синхронизация между ротором и вращающимися клапанами выполнена с использованием зубчатой передачи. Кроме того имеется еще два поворотных клапана обеспечивающих простой реверс.
1903
THE BRIDGE ENGINE:
1912
THE MARKS ENGINE:
|
|
sampi 1930
where there is no connecting rod between the piston and the torque arm(disk), and the piston moves in a circular path or toroidal path that forms both the combustion chamber and presure chamber.
This lack of connecting Rod leaps the thermal efficiency of the internal combustion engine system from 45% (large & heavey Compund engines for electrical power Generation not modile) power of the Diesel Reciprocating engine to a staggering 60% for Circular engines with much less with .
The Name Taken Jonova is taken from one of the inventors of this type of circular engines named
John NOWAKOWSKI.
click here to download the patent 1176990- Jonova Patent – Canadian
I have like 200 Patents that are just like the Jonova, if you are interested you can email me.
The Jonova Engine isn’t new design at all , there are hundreds of the “Jonova” like engine designs , it is only because of the The Arizona Arizona University’s work that it is becoming popular . click on the follwoing pics to go to web site
You can go to the UA site with the original artical by clicking on any of these two pics.
This engin desige goes back a hundred years (many patents exist) i have done a great deal of servey + internet.
Here isText from one of the Jonova Websites.
“Submitted By: Russell Mitchell
Team Members: Fahad Al-Maskari, Jumaa Al-Maskari, Keith Brewer, Josh Ludeke
Spring 2003Search Words
jonova engine, Jonova engine, Jonova Motor , Jonoova engine, Joonova engine, joonoova engine, joonnoova engine.
The project led to the development of four possible project phases. Phase I involves developing an animated CAD drawing illustrating the motion of the engine while providing enhanced visualization for thos unfamiliar with the project. Phase II consists of developing a stereo lithography model for dynamic design validation. The completion of Phase III is a working metal model run on compressed air. Finally, Phase IV is a hot, fuel-burning engine. This was an optional stage, to be completed if time premitted. The current design predicts an ideal engine capable of producing nineteen horsepower at 3000 rpm. This design incorporated internal compression, which ultimately results in a more enviromentally friendly engine, since less fuel is required to produce the same power. The original aim of the team was to build q hydrogen burning engine. Time, safely and sealing limitations made accomplishing this highly improbable. The hardware for the final prototype, an aluminum engine, has recently been completed due to the generous donation of machine time and material from the University Research Instumentation Center. This final prototype includes bearings, cooling channels, spark plugs, coil, distributor, carburetor and other equipment necessary to reach a fuel-burning state. Phases I, II and III were completed that resulted in a successful design project.”"
Search words
Jonova engine animation – jonova motor animation -Complete torque – full torque – Continuous torque – torque engine p- Toroidal engine – Toroidal motor- Pistonless Engine – Pistonless Motor – Camless Engine – Cam less Motor-
________________________________
Исаев Игорь
разработка 19?? года воплощение 2011
Отечественным инженером и изобретателем И. Ю. Исаевым в 2009 году была предложена схема реализации циклов ДВС в конструктивной компоновке данного типа роторных машин, которая значительно отличалась от всего предложенного ранее. Главным отличием этого изобретения является вынесение в отдельные конструктивно обособленные камеры технологического цикла «горение рабочей смеси- образование газов горения высокого давления». Т.е впервые в конструкции ДВС привычный для всех типов двигателей внутреннего сгорания такт «горение-расширение», разделен на два технологических процесса «горение» и «расширение», которые реализуются в разных рабочих камерах двигателя. Именно поэтому изобретатель называется свой двигатель 5-ти тактным, так как в нем в различных конструктивных объемных камерах последовательно реализуются следующие технологические такты: